117 research outputs found

    A Triangle Inequality for p-Resistance

    Get PDF

    Predicting the labelling of a graph via minimum p-seminorm interpolation

    Get PDF
    We study the problem of predicting the labelling of a graph. The graph is given and a trial sequence of (vertex,label) pairs is then incrementally revealed to the learner. On each trial a vertex is queried and the learner predicts a boolean label. The true label is then returned. The learner’s goal is to minimise mistaken predictions. We propose minimum p-seminorm interpolation to solve this problem. To this end we give a p-seminorm on the space of graph labellings. Thus on every trial we predict using the labelling which minimises the p-seminorm and is also consistent with the revealed (vertex, label) pairs. When p = 2 this is the harmonic energy minimisation procedure of [22], also called (Laplacian) interpolated regularisation in [1]. In the limit as p → 1 this is equivalent to predicting with a label-consistent mincut. We give mistake bounds relative to a label-consistent mincut and a resistive cover of the graph. We say an edge is cut with respect to a labelling if the connected vertices have disagreeing labels. We find that minimising the p-seminorm with p = 1 + ɛ where ɛ → 0 as the graph diameter D → ∞ gives a bound of O(Φ 2 log D) versus a bound of O(ΦD) when p = 2 where Φ is the number of cut edges.

    Generalizing p-Laplacian: spectral hypergraph theory and a partitioning algorithm

    Get PDF
    For hypergraph clustering, various methods have been proposed to defne hypergraph p-Laplacians in the literature. This work proposes a general framework for an abstract class of hypergraph p-Laplacians from a diferential-geometric view. This class includes previously proposed hypergraph p-Laplacians and also includes previously unstudied novel generalizations. For this abstract class, we extend current spectral theory by providing an extension of nodal domain theory for the eigenvectors of our hypergraph p-Laplacian. We use this nodal domain theory to provide bounds on the eigenvalues via a higher-order Cheeger inequality. Following our extension of spectral theory, we propose a novel hypergraph partitioning algorithm for our generalized p-Laplacian. Our empirical study shows that our algorithm outperforms spectral methods based on existing p-Laplacians

    Multi-class Graph Clustering via Approximated Effective p-Resistance

    Get PDF
    This paper develops an approximation to the (effective) p-resistance and applies it to multi-class clustering. Spectral methods based on the graph Laplacian and its generalization to the graph p-Laplacian have been a backbone of non-euclidean clustering techniques. The advantage of the p-Laplacian is that the parameter p induces a controllable bias on cluster structure. The drawback of p-Laplacian eigenvector based methods is that the third and higher eigenvectors are difficult to compute. Thus, instead, we are motivated to use the p-resistance induced by the p-Laplacian for clustering. For p-resistance, small p biases towards clusters with high internal connectivity while large p biases towards clusters of small “extent,” that is a preference for smaller shortest-path distances between vertices in the cluster. However, the p-resistance is expensive to compute. We overcome this by developing an approximation to the p-resistance. We prove upper and lower bounds on this approximation and observe that it is exact when the graph is a tree. We also provide theoretical justification for the use of p-resistance for clustering. Finally, we provide experiments comparing our approximated p-resistance clustering to other p-Laplacian based methods

    Mistake Bounds for Binary Matrix Completion

    Get PDF
    We study the problem of completing a binary matrix in an online learning setting.On each trial we predict a matrix entry and then receive the true entry. We propose a Matrix Exponentiated Gradient algorithm [1] to solve this problem. We provide a mistake bound for the algorithm, which scales with the margin complexity [2, 3] of the underlying matrix. The bound suggests an interpretation where each row of the matrix is a prediction task over a finite set of objects, the columns. Using this we show that the algorithm makes a number of mistakes which is comparable up to a logarithmic factor to the number of mistakes made by the Kernel Perceptron with an optimal kernel in hindsight. We discuss applications of the algorithm to predicting as well as the best biclustering and to the problem of predicting the labeling of a graph without knowing the graph in advance

    Online Similarity Prediction of Networked Data from Known and Unknown Graphs

    Get PDF
    We consider online similarity prediction problems over networked data. We begin by relating this task to the more standard class prediction problem, showing that, given an arbitrary algorithm for class prediction, we can construct an algorithm for similarity prediction with "nearly" the same mistake bound, and vice versa. After noticing that this general construction is computationally infeasible, we target our study to {\em feasible} similarity prediction algorithms on networked data. We initially assume that the network structure is {\em known} to the learner. Here we observe that Matrix Winnow \cite{w07} has a near-optimal mistake guarantee, at the price of cubic prediction time per round. This motivates our effort for an efficient implementation of a Perceptron algorithm with a weaker mistake guarantee but with only poly-logarithmic prediction time. Our focus then turns to the challenging case of networks whose structure is initially {\em unknown} to the learner. In this novel setting, where the network structure is only incrementally revealed, we obtain a mistake-bounded algorithm with a quadratic prediction time per round

    A Swirl in the Clouds Near Santa Cruz Island (Images of Note)

    Get PDF
    The authors discuss a rare photograph of an atmospheric eddy produced by marine boundary layer flow past terrain

    A Gang of Adversarial Bandits

    Get PDF
    We consider running multiple instances of multi-armed bandit (MAB) problems in parallel. A main motivation for this study are online recommendation systems, in which each of N users is associated with a MAB problem and the goal is to exploit users' similarity in order to learn users' preferences to K items more efficiently. We consider the adversarial MAB setting, whereby an adversary is free to choose which user and which loss to present to the learner during the learning process. Users are in a social network and the learner is aided by a-priori knowledge of the strengths of the social links between all pairs of users. It is assumed that if the social link between two users is strong then they tend to share the same action. The regret is measured relative to an arbitrary function which maps users to actions. The smoothness of the function is captured by a resistance-based dispersion measure Ψ. We present two learning algorithms, GABA-I and GABA-II which exploit the network structure to bias towards functions of low Ψ values. We show that GABA-I has an expected regret bound of O(pln(N K/Ψ)ΨKT) and per-trial time complexity of O(K ln(N)), whilst GABA-II has a weaker O(pln(N/Ψ) ln(N K/Ψ)ΨKT) regret, but a better O(ln(K) ln(N)) per-trial time complexity. We highlight improvements of both algorithms over running independent standard MABs across users

    Learning additive models online with fast evaluating kernels

    Get PDF
    We develop three new techniques to build on the recent advances in online learning with kernels. First, we show that an exponential speed-up in prediction time pertrial is possible for such algorithms as the Kernel-Adatron, the Kernel-Perceptron, and ROMMA for specific additive models. Second, we show that the techniques of the recent algorithms developed for online linear prediction when the best predictor changes over time may be implemented for kernel-based learners at no additional asymptotic cost. Finally, we introduce a new online kernel-based learning algorithm for which we give worst-case loss bounds for the ϵ-insensitive square loss
    corecore